On the quantum capacity of the qubit depolarizing channel

based on arXiv:1701.03081 and a paper appearing May 14

Felix Leditzky

Joint work with Nilanjana Datta, Debbie Leung, Graeme Smith

LSU group seminar, 12 May 2017
Table of Contents

1. Qubit depolarizing channel
2. Quantum capacity
3. Approximate degradability and low-noise channels
4. Useful states and entanglement distillation
5. Conclusion
Assume that we have a qubit in a state ρ.

Fixing some basis $\{|0\rangle, |1\rangle\}$, we consider the following errors:

<table>
<thead>
<tr>
<th>error</th>
<th>action</th>
<th>operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit flip</td>
<td>$</td>
<td>0\rangle \leftrightarrow</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>1\rangle \leftrightarrow</td>
</tr>
<tr>
<td>phase flip</td>
<td>$</td>
<td>0\rangle \leftrightarrow</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>1\rangle \leftrightarrow -</td>
</tr>
<tr>
<td>combined flip</td>
<td>$</td>
<td>0\rangle \leftrightarrow i</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>1\rangle \leftrightarrow -i</td>
</tr>
</tbody>
</table>
Qubit depolarizing channel

- **Depolarizing channel** \mathcal{D}_p: each of the three errors (bit flip, phase flip, combined flip) occurs with the same probability $p/3$:

$$
\mathcal{D}_p(\rho) := (1 - p)\rho + \frac{p}{3}(X\rho X + Y\rho Y + Z\rho Z).
$$

- Alternatively: \mathcal{D}_p replaces the input with the completely mixed state $\pi_2 := \frac{1}{2}I_2$ with ”probability” $q = 4p/3$:

$$
\mathcal{D}_p(\rho) = (1 - q)\rho + q\pi_2.
$$

- Exact expression for classical capacity of \mathcal{D}_p is known. [King 2003]

- Exact expression for **quantum capacity of** \mathcal{D}_p is unknown.
Table of Contents

1. Qubit depolarizing channel

2. Quantum capacity

3. Approximate degradability and low-noise channels

4. Useful states and entanglement distillation

5. Conclusion
Entanglement generation

- Alice and Bob are connected by a quantum channel $\mathcal{N}: A \rightarrow B$ that they can use n times.

- **Goal:** Generate entanglement in the form of m_n ebits
 $$|\Phi\rangle \sim |00\rangle + |11\rangle.$$

- **Protocol:** Alice prepares a pure state in her lab, sends one half through n copies of \mathcal{N}, Bob applies some decoding.

- **Quantum capacity** $Q(\mathcal{N})$: largest possible rate at which ebits can be generated with vanishing error.
Quantum capacity

▶ **LSD formula** [Lloyd 1997; Shor 2002; Devetak 2005]:

\[
Q(N) = \lim_{n \to \infty} \frac{1}{n} Q^{(1)}(N^\otimes n), \quad (\ast)
\]

where **channel coherent information** \(Q^{(1)}(N)\) is defined as

\[
Q^{(1)}(N) := \max_{|\psi\rangle_{A'}} I(A'|B)_{(\text{id} \otimes N)(\psi)},
\]

with the coherent information \(I(A|B)_{\rho} = S(B)_{\rho} - S(AB)_{\rho}\).

▶ **Hashing bound:** \(Q(N) \geq Q^{(1)}(N)\) [Devetak and Winter 2005]

▶ **Regularized formula** \((\ast)\) is in general **intractable to compute**, in particular for \(D_p\).

▶ Hence, we are interested in lower and upper bounds on \(Q(D_p)\).
Upper and lower bounds on $Q(D_p)$

Channel coherent information
Sutter et al. 2014; Smith and Smolin 2008
Upper and lower bounds on $Q(D_p)$
Upper and lower bounds on $Q(D_p)$

- - - - Channel coherent information

Sutter et al. 2014; Smith and Smolin 2008

arXiv:1701.03081 (FL, N. Datta, G. Smith)

Approximate degradability bound

Useful states bound
Table of Contents

1. Qubit depolarizing channel

2. Quantum capacity

3. Approximate degradability and low-noise channels

4. Useful states and entanglement distillation

5. Conclusion
Low depolarizing noise

- For low depolarizing noise, i.e., p close to 0, the depolarizing channel is "almost" the identity channel:

$$\mathcal{D}_p = (1 - p) \text{id} + \frac{p}{3} (\text{Pauli errors})$$

- Capacity of the identity channel is known: $Q(\text{id}) = \log d$.

- Particularly simple example of a degradable channel:

 degradable:
 \[
 \exists \mathcal{D} : B \rightarrow E \text{ s.t. } \quad \mathcal{N}^c = \mathcal{D} \circ \mathcal{N}
 \]

 $V_{\mathcal{N}} : A \rightarrow BE$ is an isometry s.t.
 \[
 \mathcal{N} = \text{Tr}_E (V \cdot V^\dagger), \\
 \mathcal{N}^c = \text{Tr}_B (V \cdot V^\dagger).
 \]
Degradability and quantum capacity

► Recall: Channel coherent information

\[Q^{(1)}(\mathcal{N}) := \max \langle \psi \rangle_{A'} I(A' \rangle B)(\text{id} \otimes \mathcal{N})(\psi). \]

► Recall: LSD-formula

\[Q(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} Q^{(1)}(\mathcal{N} \otimes n). \]

► Degradable channels: \(Q^{(1)}(\cdot) \) is weakly additive,

\[Q^{(1)}(\mathcal{N} \otimes n) = nQ^{(1)}(\mathcal{N}) \quad \Longrightarrow \quad Q(\mathcal{N}) = Q^{(1)}(\mathcal{N}) \quad (*) \]

[Devetak and Shor 2005]

► Idea: Since \(D_p \) is degradable for \(p = 0 \), is \((*)\) approximately true for \(p \gtrsim 0 \)?
Continuity of quantum capacity

- What does it mean for two channels to be close?

- **Diamond norm:** For a linear map Φ with d-dimensional input,

 $$
 \| \Phi \|_\Diamond := \sup_X \frac{\| (\text{id}_d \otimes \Phi)(X) \|_1}{\| X \|_1}.
 $$

 - Operational meaning: $\frac{1}{2} \| \Phi - \Psi \|_\Diamond$ measures distinguishability of channels Φ and Ψ (similar to trace distance and states).

- Quantum capacity is continuous with respect to the diamond norm [Leung and Smith 2009]:

 If $\| \mathcal{N} - \mathcal{M} \|_\Diamond \leq \epsilon$, then $|Q(\mathcal{N}) - Q(\mathcal{M})| \leq 8\epsilon \log |B| + 4h(\epsilon)$,

 where $h(\epsilon)$ is the binary entropy.
Low depolarizing noise and approximate degradability

1. Since $\|D_p - id\|_{\diamond} \leq p$, we expect $Q(D_p) \lesssim 1$ for small p.

2. However, continuity bound is not useful for quantitative bounds.

3. Recall: \mathcal{N} is degradable if there is a \mathcal{D} such that $\mathcal{N}^{c} = \mathcal{D} \circ \mathcal{N}$.

4. **Approximate degradability** [Sutter et al. 2014]
 A channel \mathcal{N} is η-degradable if there is another channel \mathcal{D} s.t.
 \[\|\mathcal{N}^{c} - \mathcal{D} \circ \mathcal{N}\|_{\diamond} \leq \eta. \]

5. **Degradability parameter** $\text{dg}(\mathcal{N}) :=$ optimal such η

6. $\text{dg}(\mathcal{N})$ is the solution of an SDP (also yields optimal \mathcal{D}).
Approximate degradability and quantum capacity

- **Hashing bound:** \(Q(\mathcal{N}) \geq Q^{(1)}(\mathcal{N}) \) [Devetak and Winter 2005]

- This is optimal for **degradable channels:** [Devetak and Shor 2005]

\[
Q^{(1)}(\mathcal{N}^\otimes n) = nQ^{(1)}(\mathcal{N}) \implies Q(\mathcal{N}) = Q^{(1)}(\mathcal{N})
\]

- **\(\eta \)-degradable channels:**

\[
Q^{(1)}(\mathcal{N}) \leq Q(\mathcal{N}) \leq Q^{(1)}(\mathcal{N}) + f(\eta, |E|),
\]

where \(f(\eta, |E|) = -\eta \log \eta + O(\eta) \).

- Recovers degradable case: \(f(\eta, |E|) \xrightarrow{\eta \to 0} 0 \).

- **Problem:** In the generic case, this is not a very useful approximation.
Approximate degradability and quantum capacity

Problem: In the generic case, this is not a very useful approximation.

\[
|Q(\mathcal{N}) - Q^{(1)}(\mathcal{N})|
\approx -\eta \log \eta
\]

\[\eta\log \eta\]

infinite slope!
Approximate degradability and quantum capacity

But: If $\text{dg}(\mathcal{N}) = p^a$ for some underlying parameter p, and $a > 1$

\Rightarrow approximation is tangent!

$$|Q(\mathcal{N}) - Q^{(1)}(\mathcal{N})| \\ \simeq -p^a \log p^a$$
Main results

- **Degradability:** $\text{dg}(\mathcal{D}_p) = O(p^2)$.

- **Quantum capacity:**
 $$Q(\mathcal{D}_p) = 1 - h(p) - p \log 3 + O(p^2 \log p^2).$$

- **Proof idea:** Guess degrading map \mathcal{M}_p in $\|\mathcal{D}_p^c - \mathcal{M}_p \circ \mathcal{D}_p\|_\diamond$.

- **Intuition:** For small p, depolarizing channel is almost identity, so complementary channel is almost completely depolarizing.

- Let’s use the **complementary channel** itself as degrading map \mathcal{M}_p, and “give a little more to Bob”:
 $$\mathcal{M}_p = \mathcal{D}_{s(p)}^c \quad \text{with} \quad s(p) = p + ap^2.$$

- For $a = 8/3$, this yields $\|\mathcal{D}_p^c - \mathcal{D}_{s(p)}^c \circ \mathcal{D}_p\|_\diamond = O(p^2)$.
Usefulness of approximate degradability bound

- Approximate degradability might be useless in generic case.

- **However:** Extremely useful for channels with some underlying noise parameter such as D_p, for which $\text{dg}(D_p) = O(p^2)$.

- **Generalizations:**
 - Same quadratic ansatz works for any generalized Pauli channel N, proving $\text{dg}(N) = O(p^2)$.
 - For any ”low-noise channel” N with $\| \text{id} - N \| \leq \epsilon$, we have $\|N^c - N^c \circ N\| \leq 2\epsilon^{1.5}$.

 \rightarrow Low-noise channels are approximately degraded by their complementary channel!
Approximate degradability of depolarizing channel

\[\text{where } s = p + \frac{8}{3}p^2 \]
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Qubit depolarizing channel</td>
</tr>
<tr>
<td>2</td>
<td>Quantum capacity</td>
</tr>
<tr>
<td>3</td>
<td>Approximate degradability and low-noise channels</td>
</tr>
<tr>
<td>4</td>
<td>Useful states and entanglement distillation</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Upper and lower bounds on $Q(D_{p})$

Channel coherent information
- Sutter et al. 2014; Smith and Smolin 2008
- arXiv:1701.03081 (FL, N. Datta, G. Smith)

Approximate degradability bound

Useful states bound
Entanglement distillation: Convert "noisy" entanglement resource ρ_{AB} shared between Alice and Bob into a "clean" form, e.g., ebits $|\Phi\rangle \sim |00\rangle + |11\rangle$.

Protocol: local operations (LO) and classical communication (CC) between Alice and Bob.

Recall that forward CC does not increase quantum capacity of a channel [Bennett et al. 1996; Barnum et al. 2000].

Restrict to forward CC from Alice to Bob only.

Distillable entanglement $D_\rightarrow(\rho_{AB})$: largest possible rate at which ebits can be distilled with vanishing error.
Entanglement distillation and entanglement generation

- **Entanglement distillation** and **entanglement generation** are just the **static** and **dynamic** side of the same coin! [Bennett et al. 1996]

- **egen → edist:**
 - Shared state ρ_{AB} + forward LOCC \rightarrow teleportation scheme [Bennett et al. 1993] \rightarrow noisy channel \mathcal{N}_ρ.
 - egen code for \mathcal{N}_ρ distills ebits from ρ_{AB} \rightarrow edist protocol.

- **edist → egen:**
 - ebit (in Alice’s lab) + channel \mathcal{N} from Alice to Bob \rightarrow shared Choi state $\tau_{\mathcal{N}}$.
 - edist protocol for $\tau_{\mathcal{N}}$ generates ebits through \mathcal{N} \rightarrow egen code.
Entanglement distillation and entanglement generation

- These two mappings (egen ↔ edist) are inverse to each other for so-called teleportation-simulable (TS) channels.

- **TS channel**: any output state can be obtained using a teleportation protocol run on the Choi state of the channel.

- Depolarizing channel is TS [Bennett et al. 1996]:

\[
Q(D_p) = D_\rightarrow(\tau_{D_p})
\]

- From now on, focus on the "static" resource \(\tau_{D_p}\) and \(D_\rightarrow(\tau_{D_p})\).
Useful states for entanglement distillation

► **Hashing bound** [Devetak and Winter 2005]

\[D_\rightarrow(\rho_{AB}) \geq I(A\rangle B)_\rho. \]

► **But:** \(D_\rightarrow(\cdot) \) is also given by a regularized formula [Devetak and Winter 2005], and hence as intractable to compute as \(Q(\cdot) \).

► **Solution:** Identify ”useful” and ”useless” states which make the quantity \(D_\rightarrow(\cdot) \) behave nicely.

► **Useful states:** States \(\rho_{AB} \) for which hashing is optimal protocol:

\[D_\rightarrow(\rho_{AB}) = I(A\rangle B)_\rho \geq 0. \]

► **Useless states:** Undistillable states \(\sigma_{AB} \), i.e., \(D_\rightarrow(\sigma_{AB}) = 0 \). They always have \(I(A\rangle B)_\sigma \leq 0 \).
Useful states for entanglement distillation

The **useful** and **useless** states for one-way entanglement distillation are given by **degradable** and **antidegradable** states.

\[
|\psi\rangle_{ABE} \text{ purifies } \rho_{AB}
\]

\[
\rho_{AB} \quad A \quad D
\]

\[
|\psi\rangle_{ABE}
\]

\[
\rho_{AE}
\]

\[
A
\]

\[
B
\]

\[
E
\]

degradable:

\[
\exists D : B \rightarrow E \text{ s.t. } \rho_{AE} = (\text{id}_A \otimes D)(\rho_{AB})
\]

antidegradable:

\[
\exists A : E \rightarrow B \text{ s.t. } \rho_{AB} = (\text{id}_A \otimes A)(\rho_{AE})
\]
Useful states for entanglement distillation

- **Key observation:** $D_\rightarrow(\cdot)$ is convex on degradable and antidegradable states!
 (proved by [Wolf and Pérez-García 2007] for quantum capacity)

- **Main result:** Decompose ρ_{AB} into mixture of degradable (ω_i) and antidegradable (σ_i) states,

$$\rho_{AB} = \sum_i p_i \omega_i + \sum_i p_i \sigma_i, \quad (*)$$

then we have the following upper bound:

$$D_\rightarrow(\rho_{AB}) \leq \sum_i p_i I(A\rangle B)_{\omega_i}. \quad (**)$$

- $(*)$ always exists, since every pure state is degradable.

- Minimizing $(**)$ over all pure-state decompositions of ρ_{AB} yields entanglement of formation $E_F(\rho_{AB})$.
Quantum capacity of depolarizing channel

► **Goal:** Apply this upper bound to Choi state τ_{D_p} of depolarizing channel to get upper bound on $Q(D_p) = D \rightarrow (\tau_{D_p})$.

► **Strategy:** Use symmetries of τ_{D_p}!

► Choi state τ_{D_p} of depolarizing channel is an **isotropic state:**

1-parameter family of states $\{\text{Iso}(f) : f \in [0, 1]\}$ invariant under all local unitaries of the form $U \otimes U^*$. (here, $f = 1 - p$)

► The symmetry group $\{U \otimes U^* : U \text{ unitary}\}$ defines a bilateral twirl operation

$$\rho_{AB} \mapsto \int dU (U \otimes U^*) \rho_{AB} (U \otimes U^*)^\dagger = \text{Iso}(f_\rho)$$

where $f_\rho = \langle \Phi | \rho_{AB} | \Phi \rangle$.

By the no-cloning theorem, $Q(D_p) = 0$ for $p \geq 1/4$.

For $p \leq 1/4$, the $U \otimes U^*$-symmetry of τ_{D_p} allows us to restrict to degradable states that "twirl" to τ_{D_p}:

$$D \rightarrow (\tau_{D_p}) \leq \inf \{ I(A\rangle B)_{\rho} : \rho_{AB} \text{ degradable, } \langle \Phi | \rho_{AB} | \Phi \rangle = 1 - p \}.$$

Bad news: This is a non-convex optimization problem, since the set of degradable states is not convex.

Good news: We can solve it numerically for low dimensions (qubits, qutrits) → yields advertised upper bound for $d = 2$!
Table of Contents

1. Qubit depolarizing channel
2. Quantum capacity
3. Approximate degradability and low-noise channels
4. Useful states and entanglement distillation
5. Conclusion
Conclusion

- Quantum capacity of depolarizing channel is unknown.

- Best upper bound for low depolarizing noise: Approximate degradability bound.

- Approximates desirable properties of degradable channels.

- Best upper bound for high depolarizing noise: Useful states bound.

- Based on decomposition of Choi state into degradable and antidegradable parts.
References

Thank you very much for your attention!