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Our main results

For a quantum system under two common constraints:
> the system has a finite energy bandwidth;

» only certain forms of the Hamiltonian can be physically
generated,

we

> established the connection between the time-minimal
(brachistochrone) and the distance-minimal(geodesics) curves;

» developed an efficient numerical method that can solve the
time-optimal boundary value problem which otherwise cannot
be solved by conventional methods for high dimensions;

» utilize Pontryagin maximum principle to answer the question
when the time-optimal control can be solved in this way, and
when it cannot. (Drift case and drift-free case)



Gate generation and optimal control
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Under the dynamics:

U(t) = 1 (Ho + He(£))U(1)
He(t) = uk(t)He

k
we hope to find the control protocol u(t), s.t.:

max J = Fi(U(tf), Ug),
where U(tf) = U(tr)[u®,u® ... ulm]



Gate generation and optimal control:CNOT

Amplitude

=

max J = Fi(U(tf), Ud),
where U(tf) = U(te)[u®, u® ... ulm)



Time-optimal control: max Fi and min T

Ampltude

Time

tr
min J = —Fi(U(tf), Ud)+a/ dt,
0

where U(tr) = U(te)[u®,u@ ... u(m)

Drawback: this is only an approximated time-optimal solution.
Question: can we characterize the accurate time-optimal solution?

» Quantum brachistochrone equation(A. Carlini, 2006);
» Quantum computation as geometry (M. Nielsen, 2006)



Motivation for studying time-optimal problems

Why do we care about time-optimal problem?
“Better three hours too soon, than one minute too late.”
— William Shakespeare

> to reduce noise and increase fidelity;
> to study the complexity problem;

» to challenge ourself and challenge other colleagues.

e.g. Quantum Fourier Transform: O(n?), can be improved to:
O(nlogn).

|z3) . . |}

1] | ftn/2 |1z

|1} { Hya | { By pq |23}




Main characters of the story

Figure: Carl Friedrich Gauss,
1777-1855

Figure: Johann Bernoulli,
1667-1748



Shortest time v.s. shortest distance

» Bernoulli: given points A and B in a vertical plane, what is
the curve that an object travels from A to B in the shortest
time? — Brachistochrone curve: cycloid.

» Gauss: what is the shortest curve that connects A and B on a
given manifold? — Geodesic equation.

» Imagine through time travel, Bernoulli and Gauss sit together
discussing math problems:
When does the shortest-time curve coincide with the
shortest-distance curve?



Brachistochrone curve

» By definition, brachistochrone curve is the time-minimal path.
> V=-—mgy=-T= —%mv2, v = +/2gy.

foo o Lo

> Apply Euler-Lagrange equation: The curve is a cycloid.




Time-optimal quantum gate generation on SU(n)
M

» Case 1: no further restrictions beyond ||H(t)|| < E, the
time-optimal solution: H(t) = H.

» Case 2: H(t) € A, i.e., f(H) =Tr(HBk) =0, Bx € B,
forbidden space.
Brachistochrone equation(A. Carlini, PRL 96, 060503 (2006)):

H+> MBi=—iY_ MH, B,
k k

. i
=——H
U 5 (t)U

» How to solve this boundary value ODE problem?



Numerical methods to solve BVP: shooting method

v

Popular method for boundary-value ODE: shooting method.
Solve a nonlinear equation: U(tr, H(0)) = Ug.

Efficient only when the initial guess solution is close to the
actual solution. Example: 1-D case.
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Other methods: finite-difference, finite element(allocation), all
fail for high dimensions.

1401
120F
100

80}

> 60}

40t




Differential geometry on SU(n)

v

Define a metric that includes the constraints H(t) € A;
H(t) = > 4 jA; + > "5 Bk Bk, where {A;, B} form a basis.

Define a penalty g-metric:

|Hgl[2 = (Hg, Hg)g = > at?al? + ¢ 3~ (@ 51
i k

v

v

v

Geodesic equation under g-metric:

gq(Hq) = i[Hq’gq(H)]
Gq(Hq) = Pa(Hq) + qPs(Hq)

(Dowling & Nielsen, Quant. Inf. Comput. 10, 0861 (2008))



Brachistochrone-geodesic connection
Brachistochrone equation in the component form:

f1j =iy A Tr(H[A;}, B)),
k/

).\k = IZ >‘k’ Tr(H[Bk, Bk’])'
k/
Geodesic equation in the component form:

& = :Za" Tr(HglAj, Ai]) +1 > B, Tr(HglA;, Bu])

k/
Bl = /Z of Tr(Hg[Bk, Aji]) + /Z a8, Tr(Hq[Bxk, Bi'])
J! K’

In the large g limit:

Oé = ’quk/ Tr H [ Bk/])’

qﬁk = IZ qﬁk/ Tr Hq[Bka Bk/])

k/



Numerical simulation: “g-jumping” method

Example: a 2-qubit system:

H= thf,’,)aerhnZo ®0(2) |H|| < E

» Let's choose a random Uy in SU(4):
—0.147 4-0.356/  0.047 —0.130/  0.050 —0.734;/ —0.136 — 0.521/
—0.08 +0.335/ —0.426 +0.063/ 0.541 +0.127/ —0.578 + 0.223i
—0.770 4+ 0.073/ —0.165+0.470/ —0.360 —0.034/ 0.039 + 0.139/
0.344 — 0.116/ —0.247 +0.695/ 0.037 4+ 0.130/ —0.008 — 0.551/
» At g =1, fixing T =1, we can analytically solve
Hg=1(0) = i log Uy.
» For g > 1, we can sequentially solve H,, (0) from Hg, ,(0),
l=qa <@ < q1<qe<-

Ug =



lllustration of “g-jumping” method
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Figure: geodesic deviation with 2 fixed ends
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Example: 2-qubit random U, g-jumping

q Geodesic solution: Hg(0) = (a(0),5/(0)), j=1,--- .7, k=1,---.,8 Fidelity
1 (1.2200 -0.1238 -0.6603 -1.3985 -2.4579 1.6768 -0.7312 0.4938 0.4424 --- -0.6108) 0.7612
2 (0.9034 0.0337 -0.6488 -1.3562 -2.6288 1.7150 -0.8652 0.3377 0.4857 --- -0.5384) 0.7818
3 (10.5851 0.1617 -0.6198 -1.3278 -2.7493 1.7308 -0.9837 0.2508 0.4839 - - - -0.5086) 0.7992
4 (0.2747 0.2575 -0.5888 -1.3071 -2.8308 1.7388 -1.0848 0.1920 0.4702 --- -0.4932 ) 0.8146
5 (-0.0214 0.3244 -0.5592 -1.2916 -2.8822 1.7421 -1.1688 0.1478 0.4525 - - -0.4839) | 0.8282
39 (-2.9985 -0.0496 0.8486 -0.3773 -2.3631 0.4896 -2.4435 -0.0778 0.2137 --- -0.4464) | 0.9266
40 (-2.9972 -0.0388 0.8888 -0.3574 -2.3680 0.4507 -2.4622 -0.0787 0.2103 - - - -0.4463) | 0.9273
59 (-2.8716 1.2846 -0.6363 -0.8567 -3.2048 2.0340 -1.4730 -0.1193 0.0566 - -- -0.3967) | 0.9559
60 (-2.8693 1.2953 -0.6781 -0.8527 -3.2025 2.0753 -1.4622 -0.1201 0.0526 - -- -0.3932) | 0.9567
99 (-3.5774 0.5188 -2.4764 -0.0207 -1.7913 3.8783 -1.1532 -0.0784 0.0019 - -- -0.1488) | 0.9920
100 (-3.5776 0.4989 -2.4919 -0.0148 -1.7645 3.8928 -1.1452 -0.0774 0.0019 - -- -0.1465) | 0.9922
Brachistochrone solution: (H(0),A{(0)) = (11/(0),2{(0)), j =1,---,7, k=1,---,8 | Fidelity
approx. | ( -3.5776 0.4989 -2.4919 -0.0148 -1.7645 3.8928 -1.1452 -7.7391 0.1918 --- -14.6530) | 0.9916
exact (-4.0194 0.1372 -2.8829 0.2481 -1.0109 4.2998 -0.8674 -6.7600 0.0926 - - - -9.7607) 1

Table: For a randomly chosen Uy, geodesic solutions Hq(O),
g=1,---,100, are calculated from ngl = H®. The brachistochrone
solution H(t) is found using shooting method with the good
approximated solution derived from Hgy—100(t).




Method 2: “direct geodesic” method

—+—approxi. geo, g=100

—— exactgeo, q=100

—brachistochrone

uT

Figure: We have plotted the first component p;(t)(a1(t)) of the optimal
Hamiltonian for: (1) the approximated geodesic solution at g = 100(solid
line with markers) derived from weighted-sum optimization; (2) the
accurate geodesic solution at g = 100(dashed line); (3) the
corresponding brachistochrone solution(solid line).
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“direct geodesic” method CNOT gate

Figure: Here we show the 7 control functions that implement the
minimal-time CNOT gate (solid curves), along with those for the
geodesic solution at ¢ = 100 (dashed curves).



Complexity analysis of geodesic numerical methods

Assuming the dimension of the quantum system is N:
» weighted-sum optimization: quasi-Newton method, poly(N);
» solving initial-value ODE, poly(N).
» shooting method, poly(N) as long as it converges.

However, for a quantum system, the complexity increases as 2V.
Any classical time-optimal method will become intractable for large
quantum system.



Drift-case time-optimal control

Assuming there is a drift component in Hiot(t) which cannot be

controlled:
> Htot(t) = H() + H(t),
> [|H(®)]| < E;

» H(t) € A, ie., Tr(H(t)B) =0.
The time-optimal solution can be classified as being: (1)
nonsingular: ||Hopt(t)|| = E, (2) singular ||Hope(t)|| < E.
(Pontryagin maximum principle)
For nonsingular solution, we can write down the corresponding
brachistochrone equation and the geodesic equation.

A+ XMH+Y " ANeBi = —i[Ho+ HAH+ > XNeBi] - (1)
k k

XGq(Ha) + XGq(Hg) = —iX[Ho + Hq, Gq(Hy)] 2



Drift-case time-optimal control

» We can prove that when Hy € A, then all optimal protocols
satisfy ||H(t)|| = E, i.e., nonsingular.

» For single qubit system, with A = span{o,0,}, and o9 = 0,
all time-optimal solutions are nonsingular.

» When Hy ¢ A, if span A = su(N), then the optimal solutions
are nonsingular; if span A # su(N), and when x = @ <1,
then the optimal solutions will become singular, and for other
value of &, time-optimal solutions are still nonsingular.



Numerical examples: drift-case CNOT

H = Ho+ He( —fmZU Jood + 1Y Wi (t)ol), |IHII<E
I,m




Numerical examples: drift-case CNOT

K brachi solution: Hq(0) = (ozj(-q)(O)7 B,((q)(O)) phase | Topt
0.4 -i 7.6266
0.5 -i 6.3628
0.6 1 6.4756
0.7 -i 5.2935
0.8 -i 5.4701
0.9 | (1.2200 -0.1238 -0.6603 -1.3985 -2.4579 1.6768 -0.7312 0.4938 0.4424 - --) -i 5.5766

1 (1.2200 -0.1238 -0.6603 -1.3985 -2.4579 1.6768 -0.7312 0.4938 0.4424 - . .) -i 5.5661

2 (0.9034 0.0337 -0.6488 -1.3562 -2.6288 1.7150 -0.8652 0.3377 0.4857 - - ) -1 5.6741

3 | (0.58510.1617 -0.6198 -1.3278 -2.7493 1.7308 -0.9837 0.2508 0.4839 - - -) -1 4.4965

4 (0.2747 0.2575 -0.5888 -1.3071 -2.8308 1.7388 -1.0848 0.1920 0.4702 --- ) i 4.4965

5 | (-0.0214 0.3244 -0.5592 -1.2916 -2.8822 1.7421 -1.1688 0.1478 0.4525 - - ) 1 4.7855

Table: For different values of k, we calculate the time-optimal solution if
it is nonsingular.



Connections to other topics

We have discussed how to formulate and solve the time-optimal
control problem under two constraints: (1) ||H(t)|| < E; and (2)
Tr(H(t)B) = 0. Dependent on being nonsingular or singular, with
a drift or drift-free, the brachistochrone-geodesics connection can
be derived, and an efficient numerical method can be obtained.

» Ultimate physical limit to computation(Nature Review, S.
Llloyd, 2000);

» Zermelo Navigation problem and Randers metric (B. Russel,
PRA, 2014);

» Solovay-Kitaev theorem. Given error €, numerical time cost:
O(log*™ (1)) and sequence length: (’)(Iog3 7(Ly).

» Machine learning algorithm and big data.



The End

“We are time's subjects, and time bids be gone.”

— William Shakespeare



