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Our main results

For a quantum system under two common constraints:

I the system has a finite energy bandwidth;

I only certain forms of the Hamiltonian can be physically
generated,

we

I established the connection between the time-minimal
(brachistochrone) and the distance-minimal(geodesics) curves;

I developed an efficient numerical method that can solve the
time-optimal boundary value problem which otherwise cannot
be solved by conventional methods for high dimensions;

I utilize Pontryagin maximum principle to answer the question
when the time-optimal control can be solved in this way, and
when it cannot. (Drift case and drift-free case)



Gate generation and optimal control

Under the dynamics:

U̇(t) = − i

~
(H0 + Hc(t))U(t)

Hc(t) =
∑
k

uk(t)Hk

we hope to find the control protocol u(t), s.t.:

maxJ = Fi(U(tf ),Ud),

where U(tf ) = U(tf )[u(1),u(2), · · · ,u(m)]



Gate generation and optimal control:CNOT

maxJ = Fi(U(tf ),Ud),

where U(tf ) = U(tf )[u(1),u(2), · · · ,u(m)]



Time-optimal control: maxFi and minT

minJ = −Fi(U(tf ),Ud) + α

∫ tf

0
dt,

where U(tf ) = U(tf )[u(1),u(2), · · · ,u(m)]

Drawback: this is only an approximated time-optimal solution.
Question: can we characterize the accurate time-optimal solution?

I Quantum brachistochrone equation(A. Carlini, 2006);

I Quantum computation as geometry (M. Nielsen, 2006)



Motivation for studying time-optimal problems

Why do we care about time-optimal problem?
“Better three hours too soon, than one minute too late.”

— William Shakespeare

I to reduce noise and increase fidelity;

I to study the complexity problem;

I to challenge ourself and challenge other colleagues.

e.g. Quantum Fourier Transform: O(n2), can be improved to:
O(n log n).



Main characters of the story

Figure: Johann Bernoulli,
1667-1748

Figure: Carl Friedrich Gauss,
1777-1855



Shortest time v.s. shortest distance

I Bernoulli: given points A and B in a vertical plane, what is
the curve that an object travels from A to B in the shortest
time? – Brachistochrone curve: cycloid.

I Gauss: what is the shortest curve that connects A and B on a
given manifold? – Geodesic equation.

I Imagine through time travel, Bernoulli and Gauss sit together
discussing math problems:
When does the shortest-time curve coincide with the
shortest-distance curve?



Brachistochrone curve

I By definition, brachistochrone curve is the time-minimal path.

I V = −mgy = −T = −1
2mv2, v =

√
2gy .

I

∫
dt =

∫
ds

v
=

∫ √
1 +

(
dy
dx

)2
√

2gy
dx =

∫
f (

dy

dx
, y)dx

I Apply Euler-Lagrange equation: The curve is a cycloid.



Time-optimal quantum gate generation on SU(n)

I Case 1: no further restrictions beyond ||H(t)|| ≤ E , the
time-optimal solution: H(t) ≡ H̄.

I Case 2: H(t) ∈ A, i.e., fk(H) = Tr(HBk) = 0, Bk ∈ B,
forbidden space.
Brachistochrone equation(A. Carlini, PRL 96, 060503 (2006)):

Ḣ +
∑
k

λ̇kBk = −i
∑
k

λk [H,Bk ],

U̇ = − i

~
H(t)U

I How to solve this boundary value ODE problem?



Numerical methods to solve BVP: shooting method
I Popular method for boundary-value ODE: shooting method.
I Solve a nonlinear equation: U(tf ,H(0)) = Ud .
I Efficient only when the initial guess solution is close to the

actual solution. Example: 1-D case.
I Other methods: finite-difference, finite element(allocation), all

fail for high dimensions.



Differential geometry on SU(n)

I Define a metric that includes the constraints H(t) ∈ A;

I H(t) =
∑
A αjAj +

∑
B βkBk , where {Aj ,Bk} form a basis.

I Define a penalty q-metric:

||Hq||2q = 〈Hq,Hq〉q ≡
∑
j

α
(q)
j α

(q)
j + q

∑
k

β
(q)
k β

(q)
k

I Geodesic equation under q-metric:

Gq(Ḣq) = i [Hq,Gq(H)]

Gq(Hq) ≡ PA(Hq) + qPB(Hq)

(Dowling & Nielsen, Quant. Inf. Comput. 10, 0861 (2008))



Brachistochrone-geodesic connection
Brachistochrone equation in the component form:

µ̇j = i
∑
k ′

λk ′ Tr(H[Aj ,Bk ′ ]),

λ̇k = i
∑
k ′

λk ′ Tr(H[Bk ,Bk ′ ]).

Geodesic equation in the component form:

α̇q
j = i

∑
j ′

αq
j ′ Tr(Hq[Aj ,Aj ′ ]) + i

∑
k ′

qβqk ′ Tr(Hq[Aj ,Bk ′ ])

qβ̇qk = i
∑
j ′

αq
j ′ Tr(Hq[Bk ,Aj ′ ]) + i

∑
k ′

qβqk ′ Tr(Hq[Bk ,Bk ′ ])

In the large q limit:

α̇q
j = i

∑
k ′

qβqk ′ Tr(Hq[Aj ,Bk ′ ]),

qβ̇qk = i
∑
k ′

qβqk ′ Tr(Hq[Bk ,Bk ′ ])



Numerical simulation: “q-jumping” method

Example: a 2-qubit system:

H = ~
∑
l ,m

ω
(l)
m σ

(l)
m + ~κ

∑
m

σ
(1)
m ⊗ σ(2)m , ||H|| ≤ E

I Let’s choose a random Ud in SU(4):

Ud =


−0.147 + 0.356i 0.047− 0.130i 0.050− 0.734i −0.136− 0.521i
−0.08 + 0.335i −0.426 + 0.063i 0.541 + 0.127i −0.578 + 0.223i
−0.770 + 0.073i −0.165 + 0.470i −0.360− 0.034i 0.039 + 0.139i
0.344− 0.116i −0.247 + 0.695i 0.037 + 0.130i −0.008− 0.551i


I At q = 1, fixing T = 1, we can analytically solve

Hq=1(0) = i logUd .

I For q > 1, we can sequentially solve Hqk (0) from Hqk−1
(0),

1 = q1 < q2 < · · · qk−1 < qk < · · · .



Illustration of “q-jumping” method
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Figure: geodesic deviation with 2 fixed ends



Example: 2-qubit random Ud , q-jumping

q Geodesic solution: Hq(0) = (αq
j (0), βqk (0)), j = 1, · · · , 7, k = 1, · · · , 8 Fidelity

1 (1.2200 -0.1238 -0.6603 -1.3985 -2.4579 1.6768 -0.7312 0.4938 0.4424 · · · -0.6108) 0.7612
2 (0.9034 0.0337 -0.6488 -1.3562 -2.6288 1.7150 -0.8652 0.3377 0.4857 · · · -0.5384) 0.7818
3 ( 0.5851 0.1617 -0.6198 -1.3278 -2.7493 1.7308 -0.9837 0.2508 0.4839 · · · -0.5086) 0.7992
4 (0.2747 0.2575 -0.5888 -1.3071 -2.8308 1.7388 -1.0848 0.1920 0.4702 · · · -0.4932 ) 0.8146
5 ( -0.0214 0.3244 -0.5592 -1.2916 -2.8822 1.7421 -1.1688 0.1478 0.4525 · · · -0.4839) 0.8282
...

...
...

39 ( -2.9985 -0.0496 0.8486 -0.3773 -2.3631 0.4896 -2.4435 -0.0778 0.2137 · · · -0.4464) 0.9266
40 (-2.9972 -0.0388 0.8888 -0.3574 -2.3680 0.4507 -2.4622 -0.0787 0.2103 · · · -0.4463) 0.9273
...

...
...

59 (-2.8716 1.2846 -0.6363 -0.8567 -3.2048 2.0340 -1.4730 -0.1193 0.0566 · · · -0.3967) 0.9559
60 ( -2.8693 1.2953 -0.6781 -0.8527 -3.2025 2.0753 -1.4622 -0.1201 0.0526 · · · -0.3932) 0.9567
99 (-3.5774 0.5188 -2.4764 -0.0207 -1.7913 3.8783 -1.1532 -0.0784 0.0019 · · · -0.1488) 0.9920

100 (-3.5776 0.4989 -2.4919 -0.0148 -1.7645 3.8928 -1.1452 -0.0774 0.0019 · · · -0.1465) 0.9922

Brachistochrone solution: (H(0), λqk(0)) = (µqj (0), λqk(0)), j = 1, · · · , 7, k = 1, · · · , 8 Fidelity

approx. ( -3.5776 0.4989 -2.4919 -0.0148 -1.7645 3.8928 -1.1452 -7.7391 0.1918 · · · -14.6530) 0.9916
exact (-4.0194 0.1372 -2.8829 0.2481 -1.0109 4.2998 -0.8674 -6.7600 0.0926 · · · -9.7607) 1

Table: For a randomly chosen Ud , geodesic solutions Hq(0),
q = 1, · · · , 100, are calculated from H0

q=1 = H̄(1). The brachistochrone
solution H(t) is found using shooting method with the good
approximated solution derived from Hq=100(t).



Method 2: “direct geodesic” method

Figure: We have plotted the first component µ1(t)(α1(t)) of the optimal
Hamiltonian for: (1) the approximated geodesic solution at q = 100(solid
line with markers) derived from weighted-sum optimization; (2) the
accurate geodesic solution at q = 100(dashed line); (3) the
corresponding brachistochrone solution(solid line).

J = 1− 1

N
||Tr[U†dU(T )]||+ α

∫ T

0
||Hq(t)||qdt,



“direct geodesic” method CNOT gate
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Figure: Here we show the 7 control functions that implement the
minimal-time CNOT gate (solid curves), along with those for the
geodesic solution at q = 100 (dashed curves).



Complexity analysis of geodesic numerical methods

Assuming the dimension of the quantum system is N:

I weighted-sum optimization: quasi-Newton method, poly(N);

I solving initial-value ODE, poly(N).

I shooting method, poly(N) as long as it converges.

However, for a quantum system, the complexity increases as 2N .
Any classical time-optimal method will become intractable for large
quantum system.



Drift-case time-optimal control

Assuming there is a drift component in Htot(t) which cannot be
controlled:

I Htot(t) = H0 + H(t);

I ||H(t)|| ≤ E ;

I H(t) ∈ A, i.e., Tr(H(t)B) = 0.

The time-optimal solution can be classified as being: (1)
nonsingular: ||Hopt(t)|| = E , (2) singular ||Hopt(t)|| < E .
(Pontryagin maximum principle)
For nonsingular solution, we can write down the corresponding
brachistochrone equation and the geodesic equation.

λ̇H + λḢ +
∑
k

λ̇kBk = −i [H0 + H, λH +
∑
k

λkBk ] (1)

˙̄λGq(Hq) + λ̄Gq(Ḣq) = −i λ̄[H0 + Hq,Gq(Hq)] (2)



Drift-case time-optimal control

I We can prove that when H0 ∈ A, then all optimal protocols
satisfy ||H(t)|| = E , i.e., nonsingular.

I For single qubit system, with A = span{σx , σy}, and σ0 = σz ,
all time-optimal solutions are nonsingular.

I When H0 /∈ A, if spanA = su(N), then the optimal solutions

are nonsingular; if spanA 6= su(N), and when κ ≡ ||H0||
E � 1,

then the optimal solutions will become singular, and for other
value of κ, time-optimal solutions are still nonsingular.



Numerical examples: drift-case CNOT

H = H0 +Hc(t) = ~κ
∑
m

σ
(1)
m ⊗σ(2)m +~

∑
l ,m

ω
(l)
m (t)σ

(l)
m , ||H|| ≤ E



Numerical examples: drift-case CNOT

κ brachi solution: Hq(0) = (α
(q)
j (0), β

(q)
k (0)) phase Topt

0.4 -i 7.6266
0.5 -i 6.3628
0.6 1 6.4756
0.7 -i 5.2935
0.8 -i 5.4701
0.9 (1.2200 -0.1238 -0.6603 -1.3985 -2.4579 1.6768 -0.7312 0.4938 0.4424 · · · ) -i 5.5766
1 (1.2200 -0.1238 -0.6603 -1.3985 -2.4579 1.6768 -0.7312 0.4938 0.4424 · · · ) -i 5.5661
2 (0.9034 0.0337 -0.6488 -1.3562 -2.6288 1.7150 -0.8652 0.3377 0.4857 · · · ) -1 5.6741
3 ( 0.5851 0.1617 -0.6198 -1.3278 -2.7493 1.7308 -0.9837 0.2508 0.4839 · · · ) -1 4.4965
4 (0.2747 0.2575 -0.5888 -1.3071 -2.8308 1.7388 -1.0848 0.1920 0.4702 · · · ) i 4.4965
5 ( -0.0214 0.3244 -0.5592 -1.2916 -2.8822 1.7421 -1.1688 0.1478 0.4525 · · · ) 1 4.7855

Table: For different values of κ, we calculate the time-optimal solution if
it is nonsingular.



Connections to other topics

We have discussed how to formulate and solve the time-optimal
control problem under two constraints: (1) ||H(t)|| ≤ E ; and (2)
Tr(H(t)B) = 0. Dependent on being nonsingular or singular, with
a drift or drift-free, the brachistochrone-geodesics connection can
be derived, and an efficient numerical method can be obtained.

I Ultimate physical limit to computation(Nature Review, S.
Llloyd, 2000);

I Zermelo Navigation problem and Randers metric (B. Russel,
PRA, 2014);

I Solovay-Kitaev theorem. Given error ε, numerical time cost:
O(log2.71(1ε )) and sequence length: O(log3.97(1ε )).

I Machine learning algorithm and big data.



The End

“We are time’s subjects, and time bids be gone.”

— William Shakespeare


